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Abstract

Corticotropin-releasing factor (CRF) is widely distributed throughout the brain and has been shown to mediate numerous endocrine

and behavioral responses to stressors. During acute ethanol withdrawal, CRF release is increased in the central nucleus of the amygdala

(CeA), and there is evidence to suggest that this activation of amygdala CRF systems may mediate the anxiogenic properties of the

ethanol withdrawal syndrome. The present study was conducted to determine if another CRF-containing limbic structure, the bed

nucleus of the stria terminalis (BNST), we would exhibit similar increases in CRF neurotransmission during ethanol withdrawal. Rats

were administered an ethanol-containing (6.7% v/v) or control liquid diet for 2 weeks and subsequently implanted with microdialysis

probes into the lateral BNST. A 50–75% increase in dialysate CRF levels was observed following removal of the ethanol-containing

diet, while no changes were observed in control animals. When ethanol-withdrawn animals were given subsequent access to the

ethanol-containing diet, dialysate CRF levels returned to basal levels. However, when ethanol-withdrawn animals were given subsequent

access to the control diet, dialysate CRF levels increased further to 101% above basal levels. These data demonstrate that extracellular

CRF levels are increased in the BNST during ethanol withdrawal, and that these increases are reduced by subsequent ethanol intake.

D 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

The neuropeptide corticotropin-releasing factor (CRF)

plays an integral role in the behavioral and neuroendocrine

responses to physiological or psychological stressors

(Koob and Heinrichs, 1999; Smagin et al., 2001). CRF

is widely distributed throughout the brain, with highest

concentrations found in the hypothalamus and subcortical

limbic structures (Cummings et al., 1983; Morin et al.,

1999; Olschowka et al., 1982; Swanson et al., 1983).

While hypothalamic CRF is the primary initiator of the

hypothalamic–pituitary–adrenal (HPA) axis response

(Rivier and Plotsky, 1986; Vale et al., 1981), extrahypo-

thalamic CRF systems appear to mediate the behavioral

and autonomic responses to stress (Dunn and Berridge,

1990; Koob and Heinrichs, 1999; Koob et al., 1994;

Sutton et al., 1982).

Withdrawal from chronic intake of alcohol and other

drugs of abuse is often associated with severe physiological

and psychological manifestations of stress and anxiety.

Studies have demonstrated that these withdrawal symptoms

are largely mediated by limbic CRF-containing structures.

For example, antagonism of central CRF neurotransmission

can attenuate behavioral signs of drug and alcohol with-

drawal (Baldwin et al., 1991; Brugger et al., 1998; Sarnyai

et al., 1995). Other studies have shown that neuronal CRF

release is increased in the central nucleus of the amygdala

(CeA) during acute withdrawal from ethanol (Merlo-Pich

et al., 1995), cocaine (Richter and Weiss, 1999) and canna-

binoids (Rodrı́guez de Fonseca et al., 1997), and that

antagonism of CRF neurotransmission in the CeA attenuates

the behavioral signs of drug and alcohol withdrawal (Hein-

richs et al., 1995; Rassnick et al., 1993). Thus, amygdalar
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CRF systems appear to contribute largely to the behavioral

signs of drug withdrawal.

The bed nucleus of the stria terminalis (BNST) is

considered to be an integral part of the extended amygdala

complex and shares various neuroanatomical and neuro-

chemical homologies with the CeA (Alheid et al., 1995,

1998; de Olmos and Heimer, 1999). The BNST contains

numerous CRF-immunopositive neuronal cell bodies (Cum-

mings et al., 1983; Morin et al., 1999; Olschowka et al.,

1982; Phelix and Paull, 1990; Swanson et al., 1983) and

also receives CRF-containing projections from the CeA

(Sakanaka et al., 1986). The BNST has been implicated

in neuronal (Bonaz and Tache, 1994) and behavioral

(Gewirtz et al., 1998; Walker and Davis, 1997) responses

to stress. In particular, CRF systems in this region appear to

mediate behavioral responses to stressors (Lee and Davis,

1997), as well as stress-induced relapse to drug-seeking

behaviors (Erb and Stewart, 1999). The goal of the present

study was to use microdialysis to assess changes in extrac-

ellular CRF levels in the BNST during acute ethanol

withdrawal. In addition, we sought to determine if extrac-

ellular CRF levels in this region could be modulated by

voluntary ethanol consumption following the acute with-

drawal phase.

2. Materials and methods

2.1. Animals

Male Long–Evans rats (250–400 g, Harlan, Madison,

WI) were housed individually in cylindrical Plexiglas

microdialysis cages (30 cm diameter, Instech Laboratories,

Plymouth Meeting, PA) under a 12:12 light–dark cycle

with lights on at 06:00 h. All experiments were performed

during the light portion of the light–dark cycle and were

performed in accordance with approved institutional proto-

cols and the National Institutes of Health Guide for Care

and Use and Laboratory Animals (NIH Publication No. 85-

23, revised 1985).

2.2. Surgical procedures

Animals were anesthetized with 2% halothane vaporized

in a 1:1 mixture of O2 and N2O, implanted with guide

cannulae (SciPro, North Tonawanda, NY) aimed at the

lateral region of the BNST (stereotaxic coordinates AP

� 0.3 mm, ML ± 1.6 mm from bregma, DV � 6.0 mm from

the skull surface, according to the atlas of Paxinos and

Watson, 1997) and secured with skull screws and dental

cement. The wound was treated with 2% bacitracin and 2%

xylocaine topical ointments, sutured closed with 3-0 vicryl

sutures, and animals were allowed to recover in home

microdialysis cages for at least 5 days prior to the adminis-

tration of the liquid diet. Food and water were available ad

libitum during recovery from surgical procedures.

2.3. Administration of liquid diet

Following recovery from surgery, rats were placed on a

Lieber–DeCarli liquid ethanol diet (No. 710260, Dyets,

Bethlehem, PA) or control diet (No. 710027, Dyets) (Lieber

and DeCarli, 1982) in the home microdialysis cage as the

sole source of nutrients for 2 weeks. The ethanol diet

contained 6.7% (v/v) ethanol, while the control diet con-

tained an equicaloric amount of maltose dextrin (both

diets = 1 kcal/ml). Body weight and amount of diet con-

sumed were recorded daily during diet administration.

During microdialysis procedures, diets were removed from

home cages following 90 min of baseline sample collection

and were replaced 7.5 h later followed by an additional

90 min of postwithdrawal sample collection. Following the

withdrawal period, control diet-fed animals were fed the

control diet (CTRL–CTRL), while ethanol-fed animals

were fed either the ethanol-containing diet (ETOH–ETOH)

or control diet (ETOH–CTRL).

2.4. Microdialysis procedures

Following 2 weeks of diet consumption, animals were

lightly reanesthetized as described above and implanted

with microdialysis probes with 2 mm polyethylsulfone

membranes (15 kDa cut-off, 0.6 mm o.d., SciPro) to a

final depth of � 8.0 mm from the skull surface. These

probes have an in vitro recovery rate of 13.5% for CRF

(Olive and Hodge, 2001). Probes were continuously

perfused with artificial cerebrospinal fluid (aCSF), contain-

ing 125 mM NaCl, 2.5 mM KCl, 0.5 mM NaH2PO4�H2O,

5 mM Na2HPO4, 1 mM MgCl2�6H2O, 1.2 mM CaCl2�
2H2O, 5 mM D-glucose, 0.2 mM L-ascorbic acid and

0.025% (w/v) bovine serum albumin, pH = 7.3–7.5.

Probes were attached to dual channel liquid swivels

(Instech Laboratories) with FEP tubing (0.005 in. i.d.,

CMA/Microdialysis, North Chelmsford, MA) for freely

moving microdialysis procedures. Animals were allowed

to recover from probe implantation overnight prior to

withdrawal experiments. On the following day, the aCSF

flow rate was set at 2.0 ml/min, and microdialysis samples

were collected into polypropylene microcentrifuge tubes in

a refrigerated microsampler (SciPro) at 30-min intervals.

Samples were immediately stored on dry ice following

collection and later frozen at � 70 �C until analysis by

radioimmunoassay (RIA).

2.5. Brain histology

Following microdialysis procedures, animals were deeply

anesthetized with Nembutal (150 mg/kg ip) and perfused

transcardially with 100 ml of 0.9% NaCl followed by 250 ml

of Streck Tissue Fixative (Streck Laboratories, La Vista,

NE). Brains were then removed and placed in the same

fixative for at least 48 h at 4 �C. Coronal brain sections

(30 mm thickness) were cut on a cryostat (Leica, Deerfield,
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IL), placed onto gelatin-coated slides and coverslipped.

Probe placement was verified under light microscopy, and

data from animals with probe placements outside of the

target region were discarded.

2.6. CRF radioimmunoassay

CRF content in microdialysates was measured using a

commercially available RIA kit (RK-019-06, Phoenix

Pharmaceuticals, Mountain View, CA) adapted to solid-

phase procedures (Olive and Hodge, 2001). Briefly, 96-well

microtiter plates (Dynex Microlite 2+, Dynex Technolo-

gies, Chantilly, VA) were incubated with a protein A

solution (0.4 mg/50 ml, in 0.1 M NaHCO3, pH = 9.0) for at

least 24 h at 4 �C to facilitate binding of the antisera to

the plate wells. Plates were then washed with assay buffer

(0.15 M K2HPO4, 0.2 mM ascorbic acid, 0.1% Tween-20,

0.1% gelatin, pH = 7.4, with phenol red added for

enhanced visualization), blotted dry on a paper towel

and incubated with 50 ml/well of rabbit antisera to rat/

human CRF (diluted 1:25 from stock in assay buffer) for

24 h at 4 �C. According to the manufacturer, this antisera

crossreact 100% with rat/human CRF and 0% with

urocortin, adrenocorticotropic hormone, Arg8-vasopressin,

pituitary adenylate cyclase activating polypeptide and

luteinizing hormone-releasing hormone. Following incuba-

tion with the antisera, plates were washed and incubated

with 0–50 fmol/50 ml (in quadruplicate) of synthetic rat

CRF standards diluted in aCSF. Microdialysis samples

(50 ml) were also added at this time. Standards and

samples were incubated at 4 �C for 24 h. Next, approx-

imately 5000 cpm/50 ml of 125I-labelled rat/human Tyr0-

CRF (diluted in assay buffer) was added to each well, and

the plates were incubated at 4 �C for 48 h. Finally, plates

were washed with assay buffer and blotted dry on a paper

towel, and 100 ml of Microscint 40 scintillation fluid

(Packard Instrument, Meriden, CT) was added to all

wells. The plates were covered with TopSeal film, agi-

tated for 1 min on an orbital shaker and counted on a

TopCount Microplate Scintillation Counter (Packard

Instrument). Data from microdialysis samples falling out-

side of the linear range for this assay (1.5–50 fmol/50 ml)
were discarded.

2.7. Data analysis

Femtomole values of CRF content for each 30-min

sample were transformed to percentage of basal CRF

release, assigning a value of 100% to the average CRF

level in the three 30-min baseline samples collected prior

to diet removal. Percent baseline data were then collapsed

into 90-min time blocks. All data are presented as mean ±

S.E.M. and were analyzed using a two-way repeated-

measures analysis of variance (ANOVA) followed by a

Neuman–Keuls post hoc test (SigmaStat, SPSS Science,

Chicago, IL).

3. Results

3.1. Placement of microdialysis probes

As shown in Fig. 1, the majority of dialysis probes were

placed in the rostrolateral portion of the BNST. Probes often

extended ventrally beyond the anterior commissure into the

ventral portions of the BNST as well.

3.2. Diet consumption

Rats placed on the ethanol-containing diet consumed an

average of 10.3 ± 0.8 g/kg/day of ethanol (65.8 ± 4.9 ml of

Fig. 1. Diagram of coronal sections of the rat brain indicating location of

dialysis probe placements in the lateral BNST. Vertical lines indicate

approximate location of probe membrane derived from histological

sections. Numbers indicate distance (in mm) from bregma. Figure adapted

from Paxinos and Watson (1997).
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diet/day). Rats administered the control diet consumed

102.5 ± 4.8 ml of diet/day. The body weights of animals in

the three different treatment groups before and after diet

administration are shown in Table 1. Control diet-fed

animals gained approximately 40 g during the 2 weeks of

diet administration, while the body weights of ethanol-fed

animals did not change.

When ethanol-fed rats were given access to the ethanol-

containing diet during the 90-min postwithdrawal period

(ETOH–ETOH group), 1.3 ± 0.3 g/kg ethanol was con-

sumed. When ethanol-fed rats were given access to the

control diet during the 90-min postwithdrawal period

(ETOH–CTRL group), 15.9 ± 4.6 ml of diet was consumed.

When control-fed rats were given access to the control diet

during the 90-min postwithdrawal period (CTRL–CTRL

group), 12.7 ± 1.6 ml of diet was consumed.

3.3. Radioimmunoassay of CRF

The IC50 of the CRF RIA ranged from 8 to 12 fmol/50 ml,
and the limit of detection was approximately 1.5 fmol/50 ml
(Olive and Hodge, 2001). Absolute basal levels of dialysate

CRF content in each of the three treatment groups are shown

in Table 1 and did not differ across treatment groups.

Microdialysis data from one animal in each treatment group

had to be discarded as the dialysate CRF concentrations

were outside of the linear range for this assay (1.5–50 fmol/

50 ml).

3.4. Effects of removal and replacement of liquid diet on

extracellular CRF levels in the BNST

Two-way ANOVA tests revealed significant main effects

of time [F(6,403) = 5.62, P < .001] and treatment group

[F(2,403) = 18.83, P < .001]. A significant interaction be-

tween time and treatment was also found [F(12,403) = 2.17,

P < .05]. Pairwise multiple comparison procedures showed

that dialysate CRF levels were increased during withdrawal

only in ethanol-fed animals (P < .001). As seen in Fig. 2,

dialysate CRF levels in ethanol-withdrawn rats were

increased approximately 50–75% above baseline and con-

trol-fed animals starting at 4.5 h following diet removal.

When ethanol-withdrawn animals were given subsequent

access to the ethanol-containing diet, dialysate CRF levels

declined to basal values and were not significantly different

from that of control-fed animals. However, when ethanol-

withdrawn animals were given access to the control diet,

dialysate CRF levels increased to 101 ± 21% above base-

line. These values were significantly higher than those

at the same time point of control-fed animals and those

of ethanol-withdrawn animals given access to the ethanol

diet (P < .001).

4. Discussion

In the present study, we demonstrated an increase in

extracellular CRF levels in the BNST during the acute

withdrawal phase following chronic ethanol ingestion.

These data parallel the results of an earlier study dem-

onstrating increases in extracellular CRF levels in the

CeA during acute ethanol withdrawal (Merlo-Pich et al.,

1995). These investigators demonstrated that extracellular

CRF levels in the CeA begin to increase approximately at

6–8 h following diet removal and peak at 10–12 h

postwithdrawal. Yet, in the present study, we observed

significant increases in extracellular CRF levels starting

at 4.5 h following diet removal and apparently peaking at

6 h postwithdrawal (although we did not measure CRF

Table 1

Body weight and basal dialysate levels of CRF in each treatment groupa

Treatment group Prediet body weight (g) Postdiet body weight (g) Basal dialysate CRF levels (fmol/50 ml)

CTRL–CTRL 360.12 ± 4.53 400.25 ± 4.09 9.92 ± 1.17

ETOH–ETOH 344.12 ± 3.68 339.38 ± 4.39 7.14 ± 1.06

ETOH–CTRL 334.71 ± 5.58 341.43 ± 5.44 7.26 ± 0.50

Data are presented as means ± S.E.M.
a See Section 2.3 for description of treatment groups.

Fig. 2. Effect of acute ethanol withdrawal and subsequent access to ethanol-

containing or control liquid diet on extracellular CRF levels in the BNST.

Each data point represents the mean ± S.E.M. dialysate level of CRF

(expressed as a percent of basal levels) in three 30-min microdialysis

samples for each animal. Treatment groups are designated as control-fed

rats with subsequent access to the control diet (., n= 7), ethanol-fed rats

with subsequent access to the ethanol-containing diet (~, n= 7), and

ethanol-fed rats with subsequent access to the control diet (5, n= 7).

*P < .05 vs. baseline. #P < .05 vs. control-fed animals at the same time

point. +P < .05 vs. ethanol-fed animals at the same time point.
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release at 8–12 h after diet removal). Thus, possible differ-

ences in the temporal dynamics of CRF release during

ethanol withdrawal may exist between different regions of

the extended amygdala, with CRF systems in the BNST

being activated earlier in the withdrawal phase than in

the CeA.

In order to adequately compare the present results

with those of Merlo-Pich et al. (1995), a few minor proce-

dural differences should be noted and addressed. First,

although both studies administered the liquid diet for at least

2 weeks, a Lieber–DeCarli liquid diet containing 6.7%

(v/v) ethanol was used in the present study, whereas a

Sustacal diet containing 8.5% (v/v) ethanol was used by

Merlo-Pich et al. (1995). Second, the present study used

Long–Evans rats as subjects while Merlo-Pich et al. used

Wistar rats. Third, control diet-fed animals were not pair-

fed in the present study; that is, the volume of control

diet consumed was not yoked to the volume consumed by

ethanol-fed animals. Other procedural variations include

minor differences in aCSF composition and flow rate,

probe membrane type and relative CRF recovery, and

RIA procedures. Thus, any of these procedural disparities

may have contributed to the slight temporal differences in

CRF release in the BNST during ethanol withdrawal

observed here versus those observed in the CeA by

Merlo-Pich et al. (1995). Future studies examining CRF

release in both regions using the exact same experimental

paradigms will shed light on whether the BNST CRF

systems are indeed activated prior to those in the CeA

during acute ethanol withdrawal.

The present study did not quantify physical withdrawal

symptoms during the 7.5-h period following diet removal

so as to minimize disturbance of the animals, which might

lead to confounding alterations in CRF release. However,

numerous studies have shown that administration of an

ethanol-containing liquid diet for at least 2 weeks produces

overt physical signs of withdrawal such as anxiety (Bald-

win et al., 1991; Rassnick et al., 1993), decreased loco-

motor activity (Merlo-Pich et al., 1995), body tremor

(Merlo-Pich et al., 1995), acoustic startle (Rassnick et al.,

1992), ultrasonic vocalizations (Knapp et al., 1998) and

audiogenic or handling-induced seizures (Frye et al., 1983;

Olive et al., 2001) at 6–8 h following diet removal. Thus, it

is highly likely that the animals in the present study were

experiencing one or more symptoms of ethanol withdrawal

during this period, when peak increases in CRF release

were observed.

Likely sources of extracellular CRF in the BNST are the

CRF-containing projections from the CeA (Sakanaka et al.,

1986). Thus, the BNST–CeA pathway may be activated

during ethanol withdrawal. However, given that numerous

CRF-immunopositive neuronal cell bodies have been

observed in the BNST (Cummings et al., 1983; Morin et

al., 1999; Olschowka et al., 1982; Phelix and Paull, 1990;

Swanson et al., 1983), it is possible that extracellular CRF

could arise from local somatodendritic release of this

peptide. Thus, the precise source of basal and withdrawal-

induced increases in extracellular CRF levels in the BNST

remains to be determined.

The neurochemical mechanism(s) governing limbic CRF

release also need to be assessed. It has been demonstrated

that stress increases norepineprhine (NE) release in the

BNST (Pacak et al., 1995), and numerous studies have

demonstrated reciprocal interactions between NE, CRF and

stress (for review, see Koob, 1999). In addition, acute

ethanol administration was recently demonstrated to increase

dopamine release in the BNST (Carboni et al., 2000). Thus,

catecholaminergic mechanisms may contribute to with-

drawal-induced release of CRF in the BNST.

The present study also demonstrated that acute ethanol

intake, but not control diet intake, following the withdrawal

period reduced withdrawal-induced increases in extracellu-

lar CRF levels in the BNST. Thus, endogenous CRF

release can be modulated by acute ethanol intake. The

mechanisms by which ethanol suppresses withdrawal-

induced increases in extracellular CRF in the BNST are

currently unknown. To our knowledge, the current study is

the first in vivo determination of CRF release in the BNST.

However, other studies have implicated numerous neuro-

transmitter systems in the secretion of hypothalamic CRF

in vitro (Grossman and Costa, 1993; Grossman et al.,

1993), including inhibition of CRF secretion by GABAer-

gic mechanisms (Calogero, 1995; Calogero et al., 1988;

Grossman et al., 1993). Thus, if similar regulatory mech-

anisms govern CRF release in the BNST, it could be

postulated that acute ethanol could inhibit CRF release

via facilitation of GABAA receptor function. Exploration

of this possibility is clearly warranted.

The precise physiological and behavioral ramifications of

the observed increased extracellular levels of CRF in the

BNST during ethanol withdrawal are unknown. Given the

intricate connections of the BNST with other limbic brain

regions, it is tempting to speculate that the increased CRF

neurotransmission in the BNST contributes to the anxio-

genic and negative emotional aspects of the acute ethanol

withdrawal phase. While other studies have suggested that

the anxiogenic properties of ethanol withdrawal are medi-

ated by CRF systems in the CeA (Rassnick et al., 1993),

contributions of CRF systems in the BNST cannot be ruled

out at this point. Indeed, it has been demonstrated that intra-

BNST infusions of CRF enhance fear-potentiated acoustic

startle reflexes, and that these effects are specifically medi-

ated by CRF receptors in this region (Lee and Davis, 1997).

Thus, increased CRF release in the BNST may mediate

anxiety-like behaviors during ethanol withdrawal. Other

neurotransmitters in this region such as NE may also

contribute to the aversive nature of the acute withdrawal

phase (Delfs et al., 2000).

The BNST gives rise to extensive projections to the

paraventricular nucleus of the hypothalamus (Alheid et al.,

1995; Herman et al., 1994). Thus, increases in extracellular

CRF levels in the BNST may contribute to the HPA axis
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activation commonly observed during ethanol withdrawal

(Gallant and Pena, 1992; Rasmussen et al., 2000; Tabakoff

et al., 1978). The BNST also sends projections to various

brainstem regions known to regulate autonomic function

(Alheid et al., 1995; Moga et al., 1989). Indeed, a recent

study demonstrated that CRF signaling in the BNST medi-

ates stress-induced activation of cardiovascular function

(Nijsen et al., 2001). Thus, the observed increases in

extracellular CRF in the BNST may contribute to the

cardiovascular activation and dysregulation commonly

observed during ethanol withdrawal (Mehta and Sereny,

1979; Smile, 1984; Weise et al., 1985).

In animal models of drug dependence, exposure to

stressors, drug-paired environmental stimuli and priming

doses of the drug induce reinstatement of drug and ethanol

self-administration following extinction (Katner et al., 1999;

Le et al., 1998; Koob, 2000; Shaham et al., 2000; Stewart,

2000). Stress-induced ‘‘relapse’’ behavior can be attenuated

by administration CRF antagonists (Lê et al., 2000; Sarnyai

et al., 2001; Shaham et al., 2000; Stewart, 2000), even when

microinjected into the BNST (Erb and Stewart, 1999). Thus,

the increased CRF release in the BNST observed in the

present study may play a role in the ability of stress to

induce relapse to ethanol-seeking behavior following

detoxification. However, other neuropeptide systems may

also be involved in stress-induced relapse to drug-seeking

behaviors (Martin-Fardon et al., 2000).

A particularly interesting aspect of the present study was

the finding that when animals that were previously fed the

ethanol-containing diet were exposed to the control diet

following withdrawal, CRF release in the BNST increased

to levels above those seen during the withdrawal period. It is

possible that this effect could be a form of conditioned

withdrawal or cue reactivity (for review, see Drummond,

2001). For instance, conditioning theories suggest that

neutral stimuli, such as the sensory cues associated with

the liquid diet, can elicit unconditioned responses after

repeated with a drug (i.e., ethanol). Disruption of this

pairing in ethanol-fed animals by the presentation and intake

of the control diet might have produced a stress response, as

reflected in increased CRF release. Indeed, there is ample

evidence that reactivity to learned ethanol-associated stimuli

(i.e., ‘‘cue reactivity’’) indeed can influence craving and

relapse to ethanol consumption during acute withdrawal, as

well as protracted abstinence (for reviews, see Drummond,

2000, 2001). Additional studies measuring CRF release

following explicit pairing of ethanol exposure and envir-

onmental stimuli are required to further address this issue.

In conclusion, the present study demonstrates that extra-

cellular CRF levels are elevated in the BNST during acute

ethanol withdrawal, and that this activation can, in turn, be

reduced by subsequent ethanol consumption or further

increased by the presentation of a nonalcohol containing

diet. Further investigations into the motivational, affective

and autonomic consequences of these increases in CRF

release in the BNST are clearly needed.
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